Model-based Deep Hand Pose Estimation

Xingyi Zhou, Qingfu Wan, Wei Zhang, Xiangyang Xue, Yichen Wei

Fudan University & Microsoft Research

July 7, 2016
Motivation

• Various applications in human-computer interaction, augmented reality and driving analysis ...
• Widely used commercial depth sensors.
• Hot research topic.

Goal Given a depth image of human hand, estimate accurate 3D joint locations.
Generative Approaches

Model-based, synthesize and optimize.

- [Oikonomidis et al., 2011]
- [Makris et al., 2015]
- [Qian et al., 2014]
- [Tagliasacchi et al., 2015]
- [Sharp et al., 2015]

- Could be highly accurate
- Guaranteed to be valid
- Slow
Discriminative Approaches

Learning-based, learn a direct regression function.

Random Forest Regressor
- [Keskin et al., 2012]
- [Tang et al., 2013]
- [Xu and Cheng, 2013]
- [Sun et al., 2015]
- [Li et al., 2015]

CNN Regressor
- [Oberweger et al., 2015a]

- Much more efficient
- Results are coarse
- Violate hand geometry
Hybrid Approaches

Use discriminative method for initialization, and model-based refinement.

- [Tompson et al., 2014]
- [Oberweger et al., 2015b]
- [Dong et al., 2015]
- [Sridhar et al., 2015]
Model-based Deep Hand Pose Estimation

- We designed a novel layer in deep learning that realized the non-linear forward kinematic mapping from joint angles to joint locations.
- We add a physical constraint as a multi-task loss in the objective function to ensure physical validity.
Hand Model

A hand model is a map from hand pose parameters Θ to 3D joint locations Y

- $\mathcal{F} : \mathcal{R}^D \rightarrow \mathcal{R}^{J \times 3}$
- $D = 26$: The DOF of human hand
- $J = 23$: The number of key joints
- $Y = \mathcal{F}(\Theta)$
- $\theta_i \in [\underline{\theta_i}, \bar{\theta}_i]$
Forward Kinematics

\[\mathbf{p}_{u^{(k)}} = \left(\prod_{t \in Pa(u)} \mathbf{Rot}_{\phi_t}(\theta_t) \times \mathbf{Trans}_{\phi_t}(\theta_t) \right)[0, 0, 0, 1]^T \]
Deep Learning with a Hand Model Layer

Joint location loss:

\[L_{jt}(\Theta) = \frac{1}{2} ||F(\Theta) - Y||^2 \]

Physical constraint loss:

\[L_{phy}(\Theta) = \sum_i [\max(\theta_i - \theta_i, 0) + \max(\theta_i - \bar{\theta}_i, 0)]. \]

Overall loss:

\[L(\Theta) = L_{jt}(\Theta) + \lambda L_{phy}(\Theta) \]
Self-Comparison

NYU Hand Pose Dataset:

- Accurate joint locations annotation.
- We use an off-line model fitting to obtain angles ground truth.

Baselines:

- direct joint regression

- direct parameter regression

- without physical constraint
Self-Comparison(Results)

Results:

- Direct joint is hard to be fitted in a model.
- Direct parameter has large joint error.
- Ours w/o phy is the best, but there are 18.6% frames have out-of-range angles.
- Physical constraint reduces invalid frames to 0.9%.
Comparison with the State-of-the-art

NYU Dataset

ICVL Dataset
Conclusion

• End-to-end learning using the non-linear forward kinematics layer in a deep neural network is feasible for hand pose estimation.

• Adding an additional regularization loss on the intermediate pose representation is important for pose validity.

• Exploit the prior knowledge in learning process.
Q & A

Code is available at
https://github.com/tenstep/DeepModel

{zhouxy13, qfwan13, weizh, xyxue}@fudan.edu.cn
yichenw@microsoft.com